
Real world tips, tricks, and 
notes of using epoll-based 

busy polling to reduce latency
Joe Damato



Hi, my name is Joe.

I work at Fastly.

My opinions are my own.



h2o/TLS HTTP caching Golang 
daemons

administrative Rust code for compute

…. and more …

A Fastly computer looks like this



Overall takeaways:

- Busy poll helped us reduce latency in prod
- Needed some tweaks to get us there
- System-wide config is too coarse-grained
- More work to be done
- More docs needed overall



But before we can talk about 
busy polling: NAPI.



[Very high-level diagram]



1. Network data

Network card

CPU

2.  Interrupt 
is generated 
per queue 

3. Kernel softirq started, interrupts disabled

Kernel thread

4. Kernel softirq gathers 
packets.

Hardware queues

5. More network data arrives 
without generating interrupts



NAPI 
● Reduce interrupt load
● Improve CPU cache efficiency
● Should benefit high speed NICs (faster 

speed = faster data arrival = more 
interrupts)



But … real world data from 
a prod machine with lots of 
traffic, suggests….





This felt like something was 
wrong.

So much IRQ traffic.



NAPI efficiency - RX packets per IRQ



First thing I tried, reducing 
the number of queues and 
configuring IRQ coalescing.



i40e NIC
25gbps NIC
Driver modified to count IRQs
iperf3 test

Simplest thing first: 
push tx-usecs out



Zero work readings on i40e during production test

10 second timeout
test-node-1(reduced q + TX coalesce) test-node-2 (tx coalesce) control

Run 1: 4,013,254 4,659,321 4,558,964
Run 2: 4,059,272 4,774,618 4,833,400
Run 3: 4,043,220 4,858,869 4,841,198
Run 4: 4,124,204 4,781,532 4,947,740
Run 5: 3,730,169 4,199,293 4,184,878

60 second time out
test-node-1 (reduced q + TX coalesce) test-node-2 (tx-coalesce) control

Run 1: 25,634,210 30,087,788 30,231,770
Run 2: 25,340,944 29,948,818 30,862,257
Run 3: 23,767,422 27,684,464 28,243,535
Run 4: 22,551,608 26,401,489 26,392,595

Run 5: 22,625,945 26,109,389 26,695,311

TLDR; reduction in “no-work” IRQs with 
i40e, maybe ~15% or so?



     test control
Run 1: 7,562,960   vs.   7,849,544    (+286,584 no work IRQs on control)
Run 2: 7,461,928   vs.   7,917,925    (+455,997 no work IRQs on control)
Run 3: 7,477,857   vs.   7,546,702    (+68,845 no work IRQs control)
Run 4: 7,456,894   vs.   7,729,559    (+272,665 no work IRQs on control)

Longer test, timeout 60s:

       test  control
Run 1: 47,009,259    vs.  49,755,821   (+2,746,562 no work IRQs on control)
Run 2: 46,678,501     vs.  49,547,378   (+2,868,877 no work IRQs on 
control)
Run 3: 46,313,645     vs.  49,955,651   (+3,642,006 no work IRQs on 
control)
Run 4: 43,709,998    vs.   47,735,595  (+4,025,597 no work IRQs on control)TLDR; 3-5% improvement in “no-work” 

IRQS on mlx5



Tiny improvement, but still 
felt like there was 
something I was missing?



Lots of reading of kernel code



napi_defer_hard_irqs
gro_flush_timeout

Stumbled on /sys/class/net/*/….



These settings are a 
(system-wide) way to keep NIC 
IRQs disabled (sw IRQ 
coalescing)

And process incoming data via a 
timer instead



Take away:

Controlling RX IRQs 
reduces busy IRQ 
tremendously under 
load



Using these settings reduced CPU 
usage considerably.

… which shows that RX IRQs are a 
significant source of CPU use.



BUT



Latency was introduced.

Timer fires more slowly than the 
device fires IRQs.



Lots of reading of kernel code



SO_INCOMING_NAPI_ID



No clue what this thing was or what it did.



Stumbled on an email from Cong 
Wang from 2019 who also didn’t know 

what it did





Turns out that Cong Wang writes 
kernel code





Actually, a huge amount of 
kernel code



If Cong Wang doesn’t know 
what this thing is….

then it’s not too surprising I 
had no idea what it did either.



Some documentation in the 
man page (man 7 socket)





Vaguely seemed like flow 
steering?



Supported by memcached

https://github.com/memcached/memcached/commit/4de258ed891c0e5048192be1626fff6fabb10438




1. Network data

Network card

CPU

2.  interrupt 

3. Kernel softirq started, interrupts disabled

Kernel thread

4. Kernel softirq gathers 
packets

Hardware queues

5. More network data arrives 
without generating interrupts



1. Network data

Network card

Hardware queues, each with their 
own system-wide unique ID (aka 
NAPI ID)



Example (pseudo code) usage



User program
Thread doing accept()
Dispatching based on NAPI ID
(C code on previous slide)

KernelEverything on the previous 
diagram of NAPI 

App worker threads



User program
Thread doing accept()
Dispatching based on NAPI ID
(C code on previous slide)

KernelEverything on the previous 
diagram of NAPI 

App worker threads

NIC RX queue 1 NIC RX queue 4
…



SO_INCOMING_NAPI_ID

● Provides hardware queue ID associated with connection
● Application can select worker thread based on queue ID
● Allows apps to map hardware NIC queues to threads
● Should improve cache hit rates and memory locality



But… there’s more.



Before we can proceed, let’s look at how 
epoll_wait + NAPI work normally at a high level



kernel

user

NAPI

File descriptors

app

epoll_wait

1. NAPI runs asynchronously; it is triggered by data arrival 

2. Network stack 
runs and attaches 

data to file 
descriptors

1. App calls epoll_wait, asking “which file 
descriptors are ready?”

2. epoll_wait computes which 
file descriptors are ready

3. Ready file descriptors 

We’ll assume this all happens on the same CPU



That’s how “normal” epoll_wait works, 
but…



An epoll specific modification was 
added to the kernel for 

SO_INCOMING_NAPI_ID



The SO_INCOMING_NAPI_ID of the last 
fd added to the epoll set can be busy 

polled.

To do so, you’d want to ensure all fds 
added are from the same RX queue



Set a system-wide sysctl or proc 
value

/proc/sys/net/core/busy_poll



Kind of looks like this



kernel

user

NAPI

File descriptors

app

epoll_wait

2. NAPI runs synchronously; it is triggered by epoll_wait 

3. Network stack 
runs and attaches 

data to file 
descriptors

1. App calls epoll_wait, asking “which file 
descriptors are ready?”

4. Ready file descriptors 

This is all happening on the same CPU



epoll + SO_INCOMING_NAPI_ID

1. All FDs must have same NAPI_ID
2. epoll_wait drives packet processing
3. Probably better cache efficiency
4. The app can decide to do network processing vs its own work
5. But this is limited by device IRQs which will still fire



But it’s system wide… so this makes 
everything suddenly busy poll



So…. I wrote a patch to make it per 
epoll-context specific via an ioctl

https://lore.kernel.org/netdev/20240213061652.6342-4-jdamato@fastly.com/T/




Threaded it through to:

- glibc
- uclibc-ng
- musl (patch sent, waiting)

https://sourceware.org/git/?p=glibc.git;a=commit;h=92c270d32caf3f8d5a02b8e46c7ec5d9d0315158
https://cgit.uclibc-ng.org/cgi/cgit/uclibc-ng.git/commit/?id=8bb33a2e1f2baec2078581d77e181f1ead5f51aa
https://www.openwall.com/lists/musl/2024/05/29/4




And, added a man page!





Around this same time, an academic paper 
was published:

https://dl.acm.org/doi/pdf/10.1145/3626780
https://dl.acm.org/doi/pdf/10.1145/3626780




The paper was showing promising 
results, but would we see those in 

our production workloads?



Adding 

SO_INCOMING_NAPI_ID 

support was much trickier than I expected



At Fastly:

- We use an open source web server called 
h2o, which uses SO_REUSEPORT

- Our machines have 1 or 2 dual port NICS
- We run 1 process which listens on all NICs
- We listen on lots of ports (80, 443, …)
- We use Mellanox ConnectX-5 Ex NICs

https://h2o.examp1e.net/


Rough diagram
h2o threads  ….. 

Listening ports
All threads
Listen all ports
via 
SO_REUSEPORT

80 80 80 80

443 443 443 443

Connections come 
in on any NIC and 
kernel balances 
amongst sockets in 
matching reusport 
groupNIC1 NIC2 NIC3 NIC4

Reuseport group 1

Reuseport group 2



I know what to do!

1. Custom RSS contexts to steer flows to 
CPUs where webserver worker threads run

2. Push IRQs out (we are going to poll)
3. Reuseport bpf filter inserted into the 

webserver code
4. Enable busy poll just for the web server via 

the ioctl !



The NIC settings via ethtool look like this

(sorry if this is small, download the slides 
later to read it)





I know what to do!

1. Custom RSS contexts to steer flows to 
CPUs where webserver worker threads run

2. Push IRQs out (we are going to poll)
3. Reuseport bpf filter inserted into the 

webserver code
4. Enable busy poll just for the web server via 

the ioctl !





This actually doesn’t work when you 
have multiple NICs.



queue_mapping mod 
thread count

SO_REUSEPORT cbpf program
Installed

worker threads

Buggy example



SO_REUSEPORT cbpf program

worker 
threads

Buggy example part 1

Queue 3 nic 0% 4 = 3

Connection with NAPI ID 1439
From RX queue 3 on NIC 0 
arrives.

3 modulo 4 = 3
Thread 3 is selected



SO_REUSEPORT cbpf program

worker 
threads

Buggy example part 2

Queue 3 nic 1 % 4 = 3

Connection with NAPI ID 1443
From RX queue 3 on NIC 1 
arrives.

3 modulo 4 = 3
Thread 3 is selected again



Now thread 3 has been given two connections with 
different NAPI IDs:

This breaks busy poll and is not allowed.



So… how to 
fix this?



A few ways come 
to mind, but this is 
what I did



Read a lot of kernel code





What if… listen sockets 
were grouped per NIC with 
SO_BINDTODEVICE?



Rough diagram
h2o threads  ….. 

Listening ports
All threads
Listen all ports
via 
SO_REUSEPORT

80 80 80 80

443 443 443 443

Connections come 
in on any NIC and 
kernel balances 
amongst sockets in 
matching reusport 
groupNIC1 NIC2 NIC3 NIC4

Reuseport group 1

Reuseport group 2



Busy poll h2o
h2o threads  ….. 

reuseport groups 
are delimited by 
the port and the 
NIC index

80 80 80 80
443 443 443 443

Connections come in 
on a specific NIC and 
a bpf program directs 
those connections to 
threads by queue ID

NIC 1
Rx 0

NIC 1
Rx 1

NIC 2
Rx 0

NIC 2
Rx 1

thr1
NIC 1

thr2
NIC 1

thr3
NIC 2

thr4
NIC 2

Reuseport group 3

Reuseport group 4
Reuseport group 1

Reuseport group 2



The code to get there is reasonable



Rough pseudo code of 
how I approached this:







Turned out this worked!



So now, incoming connections 
are going to worker threads while 
maintaining the constraint that 
each thread maps to one NAPI 
ID.



Busy poll h2o
h2o threads  ….. 

reuseport groups 
are delimited by 
the port and the 
NIC index

80 80 80 80
443 443 443 443

Connections come in 
on a specific NIC and 
a bpf program directs 
those connections to 
threads by queue ID

NIC 1
Rx 0

NIC 1
Rx 1

NIC 2
Rx 0

NIC 2
Rx 1

thr1
NIC 1

thr2
NIC 1

thr3
NIC 2

thr4
NIC 2

Reuseport group 3

Reuseport group 4
Reuseport group 1

Reuseport group 2



I think it’s important to mention 
what the accept path looks like.

This is what I did, but there many 
other ways, too!



busy-poll-cpu-map:
  eth1: 
    - 9
    - 10
    - 11 
    - ….
  eth2:
    - 18
    - …. 

App config read at startup maps NICs to NUMA local CPUs



So, accept path looks like this 
(psuedo code):





Internal hack that we use:



OK …. So we did all that, 
what does it look like in 
prod?



P99 latency better



P999 latency better



P9999 latency better



Cool, so latency looks much 
better for the higher percentiles.

BUT



1. we use epoll_pwait2
2. we set the busy poll usecs to 

match the pwait2 time
3. Occasionally, pwait2 runs idle



perf measurement suggests 
IRQs from the device still arrive 
which kick off NAPI and induce 
latency





napi_defer_hard_irqs
gro_flush_timeout

Can we maybe set maxevents 
lower and defer IRQs with:



We can’t.

These settings are system-wide. Other 
latency sensitive apps that are not 
busy-poll compatible will suffer.

Turns out choosing these two values is 
really, really hard anyway.



That’s where the future comes in:

Some things you may want to work on
Some things I and Fastly am/are working on



You (driver maintainers) can:
- Add netdev-genl support to your driver
- Already supported by:

- mlx4
- mlx5
- ice
- bnxt



I am currently working on:
A collaboration with Martin Karsten of U Waterloo:

- A kernel patch which:
- disables interrupts during busy poll but
- re-enables IRQs if busy poll has no data
- Avoids needing to pick “the right numbers” for napi_defer_hard_irqs 

and gro_flush_timeout which might change if the system is under 
load or idle

- gro_flush_timeout serves as a “backstop” if userland is slow

- Initial data measured against memcached looks very promising.

- Enabled via a busy poll ioctl per context



Hopefully 
submitting an RFC 
with data soon.



Fastly is working on

Upstreaming our busy poll 
implementation to open source h2o.

Not ready yet, but we are working on 
it and planning to open source it.

https://h2o.examp1e.net/


I am hoping to work on:
napi_defer_hard_irqs
gro_flush_timeout

per NAPI

(via netdev-genl hopefully?)



?


