Real world tips, tricks, and
notes of using epoll-based
busy polling to reduce latency

Joe Damato



Hi, my name is Joe.
| work at Fastly.

My opinions are my own.



A Fastly computer looks like this



Overall takeaways:

- Busy poll helped us reduce latency in prod
- Needed some tweaks to get us there

- System-wide config is too coarse-grained
- More work to be done

- More docs needed overall



But before we can talk about
busy polling: NAPI.



[Very high-level diagram]



3. Kernel softirq started, interrupts disabled

2. Interrupt
is generated
per queue

- 4. Kernel softirq gathers

e eiieeeeiiieieiii...... packets.

Hardware queues I I I I I

A ¥-.... 5. More network data arrives
: "+ without generating interrupts

1.  Network data



NAP]

e Reduce interrupt load

e Improve CPU cache efficiency

e Should benefit high speed NICs (faster
speed = faster data arrival = more
interrupts)



But ... real world data from
a prod machine with lots of
traffic, suggests....



CPU Basic

Busy IRQ time is
~10-15% of CPU

0%
20:00 AR 22:00 23:00

== Busy System ~ Busy User Busy lowait == BusyIRQs -~ Busy Other == Idle




This felt like something was
wrong.

So much IRQ traffic.



NAPI efficiency - RX packets per IRQ

0.750

0.700

0.650

0.600

0.550

0.500

0.450

0.400

0.350

0.300

0.250

0.200

0.150

0.100

).0500

A

13:00 14:00

w— rarha.dbaQN2N

15:00

16:00

17:00

18:00

19:00

MM%WMMWWM

20:00 PAN 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

11:00



First thing | tried, reducing
the number of queues and
configuring IRQ coalescing.



Simplest thing first:
push tx-usecs out

140e NIC

25gbps NIC
Driver modified to count IRQs

iperf3 test

50K

45K

irq counts

adaptive-tx off
tx-usecs 312

35K

14:04:00

0 o o oo oo
13:52:00 13:57:00 13:58:00 13:59:00 14:00:00 14:01:00 14:02:00 14:03:00

== vlan200 total IRQs == vlan200 TX irgs

13:53:00 13:54:00 13:55:00 13:56:00

NIC TX rate

27.5Gb/s
25 Gb/s e o (WU W S S U S S M LD S

22.5Gb/s |

20 Gb/s [

17.5Gb/s

e “ TX rate was unaffected

12.5Gb/s

10 Gb/s |

7.50 Gb/s |
5Gb/s

2.50 Gb/s
0b/s —e—o oo o o4
13:52:00 13:53:00 13:54:00 13:55:00 13:56:00 13:57:00 13:58:00 13:59:00 14:00:00 14:01:00 14:02:00 14:03:00 14:04:00

= vlan200 tx rate



Zero work readings on i40e during production test

10 second timeout

test-node-1 (reduced g + TX coalesce) test-node-2 (tx coalesce) control
Run 1: 4,013,254 4,659,321 4,558,964
Run 2: 4,059,272 4,774,618 4,833,400
Run 3: 4,043,220 4,858,869 4,841,198
Run 4: 4,124,204 4,781,532 4,947,740
Run 5: 3,730,169 4,199,293 4,184,878

60 second time out
test-node-1 (reduced g + TX coalesce) test-node-2 (tx-coalesce) control

Run 1: 25,634,210 30,087,788 30,231,770
Run 2: 25,340,944 29,948,818 30,862,257
Run 3: 23,767,422 27,684,464 28,243,535
Run 4: 22,551,608 26,401,489 26,392,595
Run 5: 22,625,945 26,109,389 26,695,311

TLDR; reduction in “no-work” IRQs with
i40e, maybe ~15% or so?



Run
Run
Run
Run

S N

Longer

Run 1:
Run 2:

test
7,562,960
7,401,928
7,477,857
7,456,894

AVAS S
AVAS S
AVAS S
AVAS S

control

test, timeout 60s:

test
47,009,259
46,078,501

control)

Run 3:

control)

46,313,645

7,849,544 (+286,584 no work IRQs on control)
7,917,925 (+455,997 no work IRQs on control)
7,546,702 (+68,845 no work IRQs control)
7,729,559 (+272,665 no work IRQs on control)
control
vVS. 49,755,821 (+2,746,562 no work IRQs on control)

vVS. 49,547,378 (+2,868,877 no work IRQs on

VS. 49,955,651 (+3,642,0060 no work IRQs on

“TLDR;"3-5% improvement in“*no=work™

IRQS on miIx5



Tiny improvement, but still
felt like there was
something | was missing?



Lots of reading of kernel code



Stumbled on /sys/class/net/*/....

napi defer hard irgs
gro_flush_ timeout



These settings are a
(system-wide) way to keep NIC
IRQs disabled (sw IRQ
coalescing)

And process incoming data via a
timer instead



gro timer + defer hard irgs

CPU Basic

100%
75%
50%
5% Ji: —
00:10 00
— sy sy == Busy IRQs Other e
Network Traffic Basic
b's
Gbvs = —
0b/s
— e
50 Gbv/'s e R e e e e
Gbvs
50 0:30
recy

Take away:

Controlling RX IRQs
reduces busy IRQ
tremendously under
load



Using these settings reduced CPU
usage considerably.

... which shows that RX IRQs are a
significant source of CPU use.



BUIT



Latency was introduced.

Timer fires more slowly than the
device fires IRQs.



Lots of reading of kernel code



SO INCOMING NAPI ID



No clue what this thing was or what it did.



Stumbled on an email from Cong
Wang from 2019 who also didn’t know
what it did



From: Conngéng 5019—62—14 20:15 UTC (permalink / raw)
o — buyck

Cc: Eric Dumazet, sridhar.samudrala, Linux Kernel Network Developers

Hello,

While looking into the busy polling in Linux kernel, three questions
come into my mind:

1. In the document[1l], it claims sysctl.net.busy poll depends on
either SO BUSY POLL or sysctl.net.busy read. However, from the code in
ep_set busy poll napi id(), I don't see such a dependency. It simply
checks sysctl net busy poll and sk->sk napi_ id, but sk->sk napi id is
always set as long as we enable CONFIG_NET RX BUSY POLL. So what I am
missing here?

2. Why there is no socket option for sysctl.net.busy poll? Clearly
sysctl net busy poll is global and SO BUSY POLL only works for
sysctl.net.busy read.

3. How is SO INCOMING NAPI ID supposed to be used? I can't find any

useful documents online. Any example or more detailed doc?

Thanks!



Turns out that Cong Wang writes
kernel code



index : kernel/gitinetdev/net-next.git A index : kernel/git/netdev/net-next.git

index : kernel/gitinetdevinet-next




Actually, a huge amount of
kernel code



If Cong Wang doesn’'t know
what this thing is....

then it's not too surprising |
had no idea what it did either.



Some documentation in the
man page (man 7 socket)



SO_INCOMING NAPI ID (gettable since Linux 4.12)
Returns a system-level unique ID called NAPI ID that is
associated with a RX queue on which the last packet
associated with that socket is received.

This can be used by an application to split the incoming
flows among worker threads based on the RX queue on which

the packets associated with the flows are received. It
allows each worker thread to be associated with a NIC HW
receive queue and service all the connection requests
received on that RX queue. This mapping between a app
thread and a HW NIC queue streamlines the flow of data
from the NIC to the application.




Vaguely seemed like flow
steering?



Supported by memcached


https://github.com/memcached/memcached/commit/4de258ed891c0e5048192be1626fff6fabb10438

Introduce NAPI ID based worker thread selection

By default memcached assigns connections to worker threads in

a round-robin manner. This patch introduces an option to select
a worker thread based on the incoming connection's NAPI ID if
SO_INCOMING_NAPI_ID socket option is supported by the 0S.

This allows a memcached worker thread to be associated with a

NIC HW receive queue and service all the connection requests
received on a specific RX queue. This mapping between a memcached
thread and a HW NIC queue streamlines the flow of data from the
NIC to the application. In addition, an optimal path with reduced
context switches is possible, if epoll based busy polling

(sysctl -w net.core.busy_poll = <non-zero value>) is also enabled.

This feature is enabled via a new command line parameter -N <num>

or "——napi_ids=<num>", where <num> is the number of available/assigned
NIC hardware RX queues through which the connections can be received.
The number of napi_ids specified cannot be greater than the number

of worker threads specified using -t/--threads option.

If the option is not specified, or the conditions not met, the code
defaults to round robin thread selection.

Signed-off-by: Kiran Patil <kiran.patil@intel.com>
Signed-off-by: Sridhar Samudrala <sridhar.samudrala@intel.com>



3. Kernel softirq started, interrupts disabled

2. interrupt

- 4. Kernel softirq gathers

e eeieeiiiieeii........ packets

Hardware queues I I I I I

A ¥-.... 5. More network data arrives
: "+ without generating interrupts

1.  Network data



Hardware queues, each with their
own system-wide unique ID (aka
NAPI ID) A

1. Network data



Example (pseudo code) usage

fd = accept(server_fd);
getsockopt(fd, SOL_SOCKET, SO_INCOMING_NAPI_ID, &napi_id, &napi_id_len);

/* now napi_id tells you which hardware queue this connection arrived on */
dispatch_to_thread_by_napi_id(fd, napi_id);



Thread doing accept()
Dispatching based on NAPI ID - User program

(C code on previous slide)

s

Everything on the previous
diagram of NAPI




g
.
I .

Thread doing accept()

(C code on previous slide)

. .
. .
. .

.
. .
. o ©

M .
. .
. . . .
. .

. . . o

.
. . . .t
. . . .
02 .
L . . .
. . . «*
‘. o . .
. .
.« MRS
LR
DY

User program

"

Everything on the previous
diagram of NAPI

NIC RX queue 1 _I r

NIC RX queue 4



SO INCOMING NAPI ID

Provides hardware queue ID associated with connection
Application can select worker thread based on queue ID
Allows apps to map hardware NIC queues to threads
Should improve cache hit rates and memory locality



But... there’s more.



Before we can proceed, let's look at how
epoll_wait + NAP| work normally at a high level



1. App calls epoll_wait, asking “which file
descriptors are ready?”

File descriptors !

Tmcoooocoo=

data to file
descriptors

__________________________

A
runs and attaches ;

2. epoll_wait computes which
file descriptors are ready

>

|
|
|
|
|
|
|
I
I
I 2. Network stack '
|
|
|
|
|
|
I
|
|
|
|
L




That's how “normal” epoll wait works,
but...



An epoll specific modification was
added to the kernel for
SO INCOMING _NAPI ID



The SO _INCOMING _NAPI_ID of the last
fd added to the epoll set can be busy
polled.

To do so, you'd want to ensure all fds
added are from the same RX queue



Set a system-wide sysctl or proc
value

/proc/sys/net/core/busy poll



Kind of looks like this



T S—— |
I : ; I
| - |
I 1. App calls epoll_wait, asking “which file .
I . ” I
: File descriptors ? descriptors are ready? :
I i U Se r I
: i !
| ’ [
I 3. Network stack * : |
: runs and attaches ! ] i I
: data to file N : I
. descriptors :
| ) I
: |
: R ; |
: |
| 2. NAPI runs synchronously; it is triggered by epoll_wait I
| kernel !
oo o o o e e e e o mm o e mm Em o o Em o e M EEm En B B EEm En B EEm SEm EEm M EEm Em B M Em Em Em o

This is all happening on the same CPU




U

epoll + SO _INCOMING_NAPI_ID

All FDs must have same NAPI _ID

epoll_wait drives packet processing

Probably better cache efficiency

The app can decide to do network processing vs its own work
But this is limited by device IRQs which will still fire



But it's system wide... so this makes
everything suddenly busy poll



So.... | wrote a patch to make it per
epoll-context specific via an ioctl



https://lore.kernel.org/netdev/20240213061652.6342-4-jdamato@fastly.com/T/

¢ fUeT—vL—1U U.iU wUS vamaiu
2024-02-13 6:16 ° [PATCH net-next v8 1/4] eventpoll: support busy poll per epoll instance Joe Damato
* (4 more replies)
@ siblings, 5 replies; 7+ messages in thread
From: Joe Damato @ 2024-02-13 6:16 UTC (permalink / raw)
To: linux-kernel, netdev
Cc: chuck.lever, jlayton, linux-api, brauner, edumazet, davem,
alexander.duyck, sridhar.samudrala, kuba, willemdebruijn.kernel,
weiwan, David.lLaight, arnd, sdf, amritha.nambiar, Joe Damato,
Alexander Viro, Greg Kroah-Hartman, Helge Deller, Jan Kara,
Jiri Slaby, Jonathan Corbet, Julien Panis,
open list:DOCUMENTATION,
open list:FILESYSTEMS (VFS and infrastructure),
Michael Ellerman, Nathan Lynch, Palmer Dabbelt, Steve French,
Thomas Huth, Thomas Zimmermann

Greetings:
Welcome to v8.

TL;DR This builds on commit bf3b9f6372c4 ("epoll: Add busy poll support to
epoll with socket fds.") by allowing user applications to enable
epoll-based busy polling, set a busy poll packet budget, and enable or
disable prefer busy poll on a per epoll context basis.

This makes epoll-based busy polling much more usable for user
applications than the current system-wide sysctl and hardcoded budget.

To allow for this, two ioctls have been added for epoll contexts for
getting and setting a new struct, struct epoll_params.

ioctl was chosen vs a new syscall after reviewing a suggestion by Willem

de Bruijn [1]. I am open to using a new syscall instead of an ioctl, but it

seemed that:

— Busy poll affects all existing epoll_wait and epoll_pwait variants in

the same way, so new verions of many syscalls might be needed. It
seems much simpler for users to use the correct
epoll_wait/epoll_pwait for their app and add a call to ioctl to enable
or disable busy poll as needed. This also probably means less work to
get an existing epoll app using busy poll.

- previously added epoll_pwait2 helped to bring epoll closer to
existing syscalls (like pselect and ppoll) and this busy poll change



Threaded it through to:

- glibc
- uclibc-ng
- musl (patch sent, waiting)



https://sourceware.org/git/?p=glibc.git;a=commit;h=92c270d32caf3f8d5a02b8e46c7ec5d9d0315158
https://cgit.uclibc-ng.org/cgi/cgit/uclibc-ng.git/commit/?id=8bb33a2e1f2baec2078581d77e181f1ead5f51aa
https://www.openwall.com/lists/musl/2024/05/29/4

git://sourceware.org / glibc.git / commit

summary | shortlog | log | commit | commitdiff | iree

(parent: 400bdb5) | patch

Linux: Add epoll ioctls

author Joe Damato <jdamato@fastly.com>

Tue, 28 May 2024 17:37:06 +0000 (17:37 +0000)
committer Noah Goldstein <goldstein.w.n@gmail.com>

Tue, 4 Jun 2024 17:09:15 +0000 (12:09 -0500)
commit 92c270d32caf3f8d5a02b8e46c7ec5d9d0315158
tree cd19ddbbfe7031daa99539773a5d18daa934c1db tree
parent 400bdb5c85af5a52b315653357c9fca87f036bd3 commit | diff

Linux: Add epoll ioctls

As of Linux kernel 6.9, some ioctls and a parameters structure have been

introduced which allow user programs to control whether a particular

epoll context will busy poll.

Update the headers to include these for the convenience of user apps.

The ioctls were added in Linux kernel 6.9 commit 18e2bf@edf4dd

("eventpoll: Add epoll ioctl for epoll_params") [1] to

include/uapi/linux/eventpoll.h.

[1]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/diff/?h=v6.9&id=18e2bf0edf4dd

Signed-off-by: Joe Damato <jdamato@fastly.com>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>




And, added a man page!



1octl_eventpoll(2) System Calls Manual

NAME

ioctl_eventpoll, EPIOCSPARAMS, EPIOCGPARAMS - ioctl() operations for epoll file descriptors
LIBRARY

Standard C library (libc, -1c¢)
SYNOPSIS

#include <sys/epoll.h> /* Definition of EPIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd, EPIOCSPARAMS, const struct epoll_params *argp);
int ioctl(int fd, EPIOCGPARAMS, struct epoll_params *argp);

#include <sys/epoll.h>

struct epoll_params {
uint32_t busy_poll_usecs; /* Number of usecs to busy poll */
uintl6_t busy_poll_budget; /* Max packets per poll */
uint8_t prefer_busy_poll; /* Boolean preference */

/* pad the struct to a multiple of 64bits */
uint8_t __pad; /* Must be zero */

ti



Around this same time, an academic paper
was published:

Kernel vs. User-Level Networking: Don’t Throw Out the Stack
with the Interrupts

PETER CALI, University of Waterloo, Canada
MARTIN KARSTEN, University of Waterloo, Canada

This paper reviews the performance characteristics of network stack processing for communication-heavy
server applications. Recent literature often describes kernel-bypass and user-level networking as a silver
bullet to attain substantial performance improvements, but without providing a comprehensive understanding
of how exactly these improvements come about. We identify and quantify the direct and indirect costs of
asynchronous hardware interrupt requests (IRQ) as a major source of overhead. While IRQs and their handling
have a substantial impact on the effectiveness of the processor pipeline and thereby the overall processing
efficiency, their overhead is difficult to measure directly when serving demanding workloads. This paper



https://dl.acm.org/doi/pdf/10.1145/3626780
https://dl.acm.org/doi/pdf/10.1145/3626780

5.2.3 Kernel Polling. Kernel polling does not suffer from the issues that IRQ packing and IRQ
suppression face, because the decision whether to poll or enable interrupts is made automatically
based on the application’s workload. Its performance is strong in both maximum throughput and

tail latency, as evident by Table 5 and Figure 5. While it is difficult to compare throughput numbers
for specific tail latencies with this methodology, it is clear that kernel polling outperforms the
vanilla configuration by at least 30%.




The paper was showing promising
results, but would we see those In
our production workloads?



Adding
SO _INCOMING NAPI_ID

support was much trickier than | expected



At Fastly:

- We use an open source web server called
h20, which uses SO _REUSEPORT

- Our machines have 1 or 2 dual port NICS

- We run 1 process which listens on all NICs

- We listen on lots of ports (80, 443, ...)

- We use Mellanox ConnectX-5 Ex NICs



https://h2o.examp1e.net/

Rough diagram

h20o threads

Listening ports . Reuseport group 1
All threads

Listen all ports

via

SO REUSEPORT

Reuseport group 2

Connections come
in on any NIC and
kernel balances
amongst sockets in
matching reusport

group

NIC1 NIC2 NIC3 NIC4



know what to do!

1. Custom RSS contexts to steer flows to
CPUs where webserver worker threads run

2. Push IRQs out (we are going to poll)

3. Reuseport bpf filter inserted into the
webserver code

4. Enable busy poll just for the web server via

the ioctl !



The NIC settings via ethtool look like this

(sorry if this is small, download the slides
later to read it)



NICS='ethl eth2 eth3 eth4'

for

done

DEV in ${NICS}; do
# 16 queues per device

sudo ethtool -L $DEV combined 16

# for queues in the mask Oxff,
# as hardware allows

turn off adaptive IRQ algorithms; we plan to busy poll so push IRQs out as far

sudo ethtool --per-queue $DEV queue_mask Oxff --coalesce adaptive-rx off adaptive-tx off
sudo ethtool --per-queue $DEV queue_mask @xff --coalesce rx-usecs 4095 rx-frames 65535 tx-usecs 4095 tx-frames 65535

# create a custom RSS context which sends all flows to queue 0-7, this is context 1
sudo ethtool -X $DEV weight 1 1 1 11 1 1 1 context new

# set the default RSS context to send all flows to queues 8-15
sudo ethtool -X $DEV weight 00 0 0000011111111

# attach a filter rule to send
sudo ethtool -U $DEV flow-type
sudo ethtool -U $DEV flow-type

# attach a filter rule to send
sudo ethtool -U $DEV flow-type
sudo ethtool -U $DEV flow-type

all flows with a dst-port of $PORT to the queue in RSS context 1 (e.g. queues 0-7)
tcp4 dst-port 80 context 1
tcp4 dst-port 443 context 1

all flows with a dst-port of $PORT to the queue in RSS context 1 (e.g. queues 0-7)
tcp6 dst-port 80 context 1
tcp6 dst-port 443 context 1

# pin IRQs to CPUs which are NUMA local to the devices (via lstopo --whole-io)
if [ "${DEV}" = "vlanl@l" ]; then
sudo ./set_irq_affinity 9,73,4,68,24,88,28,92,3,10,19,26,34,40,48,56 $DEV

elif [ "${DEV}" = "vlan201" 1J;

sudo ./set_irqg_affinity 12,

elif [ "${DEV}" = "vlan30l" ]J;

sudo ./set_irg_affinity 16,

else

sudo ./set_irqg_affinity 22,

fi

then

76,32,96,36,100,42,106,67,74,83,90,98,104,112,120 $DEV
then

80,44,108,50,114,54,118,7,15,20,31,39,45,55,63 $DEV

86,58,122,62,126,64,82,71,79,84,95,103,109,119,127 $DEV

# setup transmit steering based on receive-queues map
# /sys/class/net/<dev>/queues/tx-<n>/xps_rxqs

sudo ./set_xps_rxqgs $DEV



| know what to do!

+—CustomRSS—contexisto-steerHowste
GRUYUs-where-webserverworkerthareads+uh

2—PushHRQsout-twe-are-gotrgtopeth

3. Reuseport bpf filter inserted into the
webserver code

4. Enable busy poll just for the web server via
the ioctl !



struct sock_filter code[] = {
/* A = skb->queue_mapping */
{ BPF_LD | BPF_W | BPF_ABS, 0, @, SKF_AD_OFF + SKF_AD_QUEUE 1},
FA=A%n */
{ BPF_ALU | BPF_MOD, @, @, n },
/* return A */
{ BPF_RET | BPF_A, 0, 0, 0 },
¥;

struct sock_fprog p = {
.Llen = ARRAY_SIZE(code),
.filter = code,

s

1f (setsockopt(fd, SOL_SOCKET, SO_ATTACH_REUSEPORT_CBPF, &p, sizeof(p))) {



This actually doesn’t work when you
have multiple NICs.



Buggy example

worker threads I I I I

SO_REUSEPORT cbpf program queue_mapping mod
Installed thread count




Buggy example part 1

worker
threads

SO_REUSEPORT cbpf program Queue 3 nic 0% 4 = 3

Connection with NAPI ID 1439
From RX queue 3 on NIC 0
arrives.

3 modulo4 =3
Thread 3 is selected



Buggy example part 2

worker
threads

SO_REUSEPORT cbpf program Queue 3 nic1% 4 =3

Connection with NAPI ID 1443
From RX queue 3 on NIC 1
arrives.

3 modulo4 =3
Thread 3 is selected again



Now thread 3 has been given two connections with
different NAPI IDs:

This breaks busy poll and is not allowed.



So... how to
fix this?



A few ways come

to mind, but this iIs
what | did



Read a lot of kernel code



static int inet_reuseport_add_sock(struct sock *sk,
struct inet_listen_hashbucket *ilb)
{
struct inet_bind_bucket *tb = inet_csk(sk)->icsk_bind_hash;
const struct hlist_nulls_node *node;
struct sock *skZ;
kuid_t uid = sock_i_uid(sk);

sk_nulls_for_each_rcu(sk2, node, &ilb->nulls_head) {
if (sk2 !'= sk &&
sk2->sk_family == sk->sk_family &&
1pvo_only_sock(sk2) == ipve_only_sock(sk) &&

inet_csk(sk2)->icsk_bind_hash == tb &&
sk2->sk_reuseport && uid_eq(Cuid, sock_i_uid(sk2)) &&
inet_rcv_saddr_equal(sk, sk2, false))
return reuseport_add_sock(sk, sk2,
inet_rcv_saddr_any(sk));

}

return reuseport_alloc(sk, inet_rcv_saddr_any(sk));



What if... listen sockets

were grouped per NIC with
SO BINDTODEVICE?



Rough diagram

h20o threads

Listening ports . Reuseport group 1
All threads

Listen all ports

via

SO REUSEPORT

Reuseport group 2

Connections come
in on any NIC and
kernel balances
amongst sockets in
matching reusport

group

NIC1 NIC2 NIC3 NIC4



Busy poII h20

h20o threads

Reuseport group 1 Reuseport group 3

Reuseport group 2 Reuseport group 4

Connections come in
on a specific NIC and
a bpf program directs
those connections to
threads by queue ID

reuseport groups
are delimited by

the port and the

NIC index

NIC1 NIC1; NIC2 NIC?2
Rx0 Rx1 | Rx0 Rx1



The code to get there Is reasonable



Rough pseudo code of
how | approached this:



char *ifaces[2] = ["eth@", "ethl"];

struct iface_listen_sockets listen_sockets[2];
char *iface;

int thread_count = 4;

int reuse = 1;

int *fd;

/* create 1 listen socket per worker thread per iface */
for (int iff = 0; iff < 2; iff++) {

iface = ifaces[iff];

listen_sockets = listen_sockets[iff];

for (int i = 0; i < thread_count; i++) {
/* create the socket */
listen_sockets->fd[i] = socket(domain, type, protocol);

/* bind it to the device */
setsockopt(listen_sockets->fd[i], SOL_SOCKET, SO_BINDTODEVICE, iface, strlen(iface));

/* set reuseport */
setsockopt(listen_sockets->fd[i], SOL_SOCKET, SO_REUSEPORT, &reuse, sizeof(reuse));

/* apply the BPF filter to the first socket in the group */
if (1 ==0) {

apply_bpf_filter(fd, thread_count);
}



/* now that the reuseport groups are created, call listen on all
* the sockets
i 4
for (int i1ff = 0; 1ff < 2; 1ff++) {
listen_sockets = listen_sockets[1ff];

for (int 1 = 0; 1 < thread_count; 1++) {
listen(listen_sockets->fd[1], 1024);
ks



Turned out this worked!



S0 now, incoming connections
are going to worker threads while
maintaining the constraint that
each thread maps to one NAPI
ID.



Busy poII h20

h20o threads

Reuseport group 1 Reuseport group 3

Reuseport group 2 Reuseport group 4

Connections come in
on a specific NIC and
a bpf program directs
those connections to
threads by queue ID

reuseport groups
are delimited by

the port and the

NIC index

NIC1 NIC1; NIC2 NIC?2
Rx0 Rx1 | Rx0 Rx1



| think it's important to mention
what the accept path looks like.

This is what | did, but there many
other ways, too!



App config read at startup maps NICs to NUMA local CPUs

busy-poll-cpu-map:
eth1:
-9
-10
- 11
eth2:
- 18



So, accept path looks like this
(psuedo code):



static __thread int cpu_claimed = 0;
static __thread int napi_id_claimed = 0;

static void handle_busy_poll_accept(int sockfd)
{

unsigned napi_id = get_napi_id(sockfd);

/* has this thread claimed a CPU? */
if (cpu_claimed) {
/* it has... does the claimed NAPI ID match the new
* connection?
X
if (napi_id_claimed == napi_id)
return;

/* here we have a mismatch. this is what happens if you
* have multiple NICs and you dont setup the reuseport
* groups in the kernel correctly
74

if (napi_id_claimed != napi_id)

fire_an_alert(Q);
} else {
struct ifreq ifr = {};

/* use a hack to get the NIC name from NAPI ID */
get_nic_name_by_napi(sockfd, napi_id, &ifr);

/* pick an un-used CPU from the list provided in config */
int cpu_id = assign_cpu_from_map(ifr.ifr_name);

/* thread claims that CPU and NAPI ID */
cpu_claimed = cpu_id;
napi_id_claimed = napi_id;

/* pin the thread to that CPU*/
pin_thread_to_cpu(cpu_id);




Internal hack that we use:

/* this 1s an internal kernel hack; works 1ike SIOCGIFNAME but given a NAPI
ID (instead of an ifindex) fills in the interface name.

sk
*
* instead, drivers should implement netdev-genl to map NAPI IDs to
* 1findexes

%

*

then user apps can use that real interface instead of this hack
static int get_nic_name_by_napi(int fd, unsigned int napi_id, struct ifreq *ifr)
1

ifr->ifr_ifru.ifru_ivalue = napi_id;

return ioctl(fd, SIOCGIFNAME_BY_NAPI_ID, 1ifr);



OK .... So we did all that,
what does 1t look like In
prod?



P99 latency better

ancy

ms
ms
ms
ms
ms
ms
ms
ms }
‘ [
ms |
ms | ‘ “
|
ms |
ms
ms =
ms

ms
16:25 16:30

16:40 16:45 16:50 16:55 17:00 17:05 17:10 1715 17:20

17:25

17:30

17:35

17:40



P999 latency better

tency histogram

ms
ms
ms
ms
ms
ms
ms
ms

ms

ms
ms

ms

ms

16:10 16:15 16:20 16:25 16:30 16:35 16:40 16:45 16:50 16:55 17:00 17:05 17:10 17:15 17:20 17:25 17:30 17:35 17:40



P9999 latency better

tency histogram
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms
ms

ms

16:00 16:05 16:10 18:15 16:20 16:25 16:30 16:35 16:40 16:45 16:50 16:55 17:00 17:05 17:10 1715 17:20 17:25 17:30 17:35 17:40



Cool, so latency looks much
better for the higher percentiles.

BUT



1. we use epoll pwait2

2. we set the busy poll usecs to
match the pwait2 time

3. Occasionally, pwait2 runs idle



perf measurement suggests
IRQs from the device still arrive
which kick off NAPI and induce

latency



default_idle_call
do_idle
[ cpu_startup_entry




Can we maybe set maxevents
lower and defer IRQs with:

napi defer hard irgs
gro_flush_timeout



We can't.

These settings are system-wide. Other
latency sensitive apps that are not
busy-poll compatible will suffer.

Turns out choosing these two values is
really, really hard anyway.



That's where the future comes in:

Some things you may want to work on
Some things | and Fastly am/are working on



You (driver maintainers) can:

- Add netdev-genl support to your driver
- Already supported by:

- mix4

- mix5

- Ice

- bnxt



| am currently working on:

A collaboration with Martin Karsten of U Waterloo:

- A kernel patch which:
- disables interrupts during busy poll but
- re-enables IRQs if busy poll has no data
- Avoids needing to pick “the right numbers” for napi_defer_hard _irgs
and gro_flush_timeout which might change if the system is under
load or idle
- gro_flush_timeout serves as a “backstop” if userland is slow

- Initial data measured against memcached looks very promising.

- Enabled via a busy poll ioctl per context



Hopefully
submitting an RFC
with data soon.



Fastly Is working on

Upstreaming our busy poll
implementation to open source h2o.

Not ready yet, but we are working on
it and planning to open source |it.


https://h2o.examp1e.net/

| am hoping to work on:

napi_defer hard irgs
gro_flush_timeout

per NAPI

(via netdev-genl hopefully?)






